Sunday, June 16, 2013

Senyawa Hidrokarbon, Pengertian, Sifat-sifat, Alifatik Tak Jenuh, Rumus, Contoh Soal, Pembahasan

Senyawa Hidrokarbon : Pengertian Sifat-sifat Alifatik Tak Jenuh Rumus Contoh Soal Pembahasan - Salah satu rumpun senyawa yang melimpah di alam adalah senyawa karbon. Senyawa ini tersusun atas atom karbon dan atom-atom lain yang terikat pada atom karbon, seperti hidrogen, oksigen, nitrogen, dan atom karbon itu sendiri. Salah satu senyawa karbon paling sederhana adalah hidrokarbon. Hidrokarbon banyak digunakan sebagai komponen utama minyak bumi dan gas alam. Apakah kekhasan dari atom karbon? Bagaimanakah atom karbon membentuk senyawa hidrokarbon? Bagaimanakah menggolongkan senyawa hidrokarbon? Anda dapat memahaminya jika Anda pelajari bab ini dengan baik.

A. Karakteristik Atom Karbon

Sejauh ini, Anda telah mengenal sedikit tentang atom karbon, yaitu atom karbon memiliki nomor atom 6 dengan konfigurasi elektron 6C : 2 4. Di alam terdapat sebagai isotop 12C, 13C, dan 14C. Dalam sistem periodik, atom karbon berada dalam golongan IVA dan periode 2. Atom karbon berikatan kovalen dengan atom bukan logam dengan valensi 4. Sesungguhnya, masih banyak sifat-sifat atom karbon yang perlu Anda ketahui.

1.1. Kekhasan Atom Karbon

Atom karbon memiliki empat elektron valensi dengan rumus Lewis yang ditunjukkan di samping. Keempat elektron valensi tersebut dapat membentuk empat ikatan kovalen melalui penggunaan bersama pasangan elektron dengan atom-atom lain. Atom karbon dapat berikatan kovalen tunggal dengan empat atom hidrogen membentuk molekul metana (CH4). Rumus Lewisnya:
rumus lewis atom karbon
Selain dapat berikatan dengan atom-atom lain, atom karbon dapat juga berikatan kovalen dengan atom karbon lain, baik ikatan kovalen tunggal maupun rangkap dua dan tiga, seperti pada etana, etena dan etuna (lihat pelajaran Tata Nama Senyawa Organik).
tana, etena dan etuna

Kecenderungan atom karbon dapat berikatan dengan atom karbon lain memungkinkan terbentuknya senyawa karbon dengan berbagai struktur (membentuk rantai panjang atau siklik). Hal inilah yang menjadi ciri khas atom karbon.
senyawa karbon rantai panjang atau siklik

Jika satu atom hidrogen pada metana (CH4) diganti oleh gugus –CH3 maka akan terbentuk etana (CH3CH3). Jika atom hidrogen pada etana diganti oleh gugus –CH3 maka akan terbentuk propana (CH3CH2CH3) dan seterusnya hingga terbentuk senyawa karbon berantai atau siklik.

Catatan :

Lewis menyatakan bahwa unsur-unsur selain gas mulia dapat mencapai kestabilan dengan cara bersenyawa dengan unsur lain atau unsur yang sama agar konfigurasi elektron dari setiap atom menyerupai konfigurasi elektron gas mulia.

Contoh Soal Penulisan Struktur Hidrokarbon (1) :

Tuliskan struktur senyawa hidrokarbon berikut.

a. Pentana
b. Siklopentana

Pembahasan :

a. C5H12 :
Pentana

b. C5H10 :
Siklopentana

2. Atom C Primer, Sekunder, Tersier, dan Kuartener

Berdasarkan kemampuan atom karbon yang dapat berikatan dengan atom karbon lain, muncul istilah atom karbon primer, sekunder, tersier, dan kuartener. Istilah ini didasarkan pada jumlah atom karbon yang terikat pada atom karbon tertentu.

Atom karbon primer (dilambangkan dengan 1o) adalah atom-atom karbon yang mengikat satu atom karbon tetangga.
Masing-masing atom karbon mengikat satu atom karbon tetangga
Masing-masing atom karbon mengikat satu atom karbon tetangga
Contoh :

Dalam molekul etana (CH3CH3) masing-masing atom karbon mengikat satu atom karbon tetangga. Oleh karena itu, dalam molekul etana terdapat dua atom C primer.

Atom karbon sekunder (dilambangkan dengan 2o) adalah atom-atom karbon yang mengikat dua atom karbon tetangga.
Atom karbon yang dilingkari, atom karbon sekunder
Atom karbon yang dilingkari, atom karbon sekunder
Atom karbon tersier (dilambangkan dengan 3o) adalah atom-atom karbon yang mengikat tiga atom karbon tetangga.
Atom karbon yang dilingkari, atom karbon tersier
Atom karbon yang dilingkari, atom karbon tersier
Contoh : 

Dalam molekul isobutana atom karbon pada posisi kedua mengikat tiga atom karbon tetangga. Oleh karena itu, dalam molekul isobutana terdapat satu atom C tersier.

Contoh Soal Menentukan Atom C 1o2o3o, dan 4o (2) :

Berapa jumlah atom C primer, sekunder, tersier, dan kuartener yang terdapat dalam hidrokarbon berikut?

atom C primer, sekunder, tersier, dan kuartener yang terdapat dalam hidrokarbon

Kunci Jawaban :

Semua gugus CH3 tergolong atom C primer, gugus CH2 tergolong atom C sekunder, gugus CH tergolong atom C tersier, dan gugus C adalah kuartener. Jadi, jumlah atom C primer ada 5 buah, atom C sekunder ada 6 buah, atom C tersier ada 3 buah, dan atom C kuartener tidak ada.

B. Identifikasi dan Klasifikasi Hidrokarbon

Anda tentu sudah mengetahui bahwa salah satu senyawa karbon yang paling sederhana adalah hidrokarbon. Senyawa hidrokarbon hanya tersusun atas unsur karbon dan hidrogen. Akan tetapi, dari dua macam unsur ini dapat membentuk banyak senyawa, mulai dari gas alam, minyak bumi, batubara hingga lilin dan polistirena.

2.1. Identifikasi Karbon dan Hidrogen

Adanya unsur karbon dan hidrogen dalam senyawa hidrokarbon dapat diidentifikasi melalui percobaan sederhana. Percobaan sederhana ini dapat dilakukan di laboratorium sekolah maupun di rumah Anda. Salah satu metodenya adalah dengan menggunakan lilin (C20H42) yang direaksikan dengan oksigen dari udara (dibakar), hasil pembakaran lilin dilewatkan ke dalam larutan Ca(OH)2 1%, seperti ditunjukkan pada Gambar 1.
Identifikasi karbon dan hidrogen menggunakan metode pembakaran lilin
Gambar 1. Identifikasi karbon dan hidrogen menggunakan metode pembakaran lilin.
Bagaimana mengidentifikasi adanya unsur karbon dan hidrogen dalam senyawa hidrokarbon atau senyawa organik? Untuk dapat menjawab ini, Anda harus memahami dulu reaksi yang terjadi.

Ketika lilin terbakar terjadi reaksi antara lilin dan oksigen dari udara. Jika pembakarannya sempurna, terjadi reaksi:

2C20H42(s) + 61O2(g) → 40CO2(g) + 42H2O(g)

Gas CO2 dan uap air hasil pembakaran akan mengalir melalui saluran menuju larutan Ca(OH)2 . Pada saat menuju larutan Ca(OH)2 , terjadi pendinginan oleh udara sehingga uap air hasil reaksi akan mencair. Hal ini dibuktikan dengan adanya tetesan-tetesan air yang menempel pada saluran. Oleh karena titik embun gas CO2 sangat rendah maka akan tetap sebagai gas dan bereaksi dengan larutan Ca(OH)2 . Bukti adanya CO2 ditunjukkan oleh larutan menjadi keruh atau terbentuk endapan putih dari CaCO3 (perhatikan Gambar 1). Persamaan reaksinya:

CO2(g) + Ca(OH)2(aq) → CaCO3(s) + H2O(l)

Untuk lebih memahami identifikasi senyawa hidrokarbon, lakukanlah percobaan berikut dengan menggunakan metode lainnya, seperti pembakaran gula pasir halus (C12H22O11). Adapun senyawa bukan hidrokarbon, tetapi prinsipnya sama, yaitu mengandung karbon dan hidrogen. Untuk mengetahuinya, lakukanlah kegiatan berikut.

Praktikum Kimia Identifikasi Karbon dan Hidrogen (1) :

Tujuan :

Mengidentifikasi adanya unsur karbon dan hidrogen dalam senyawa yang mengandung karbon dan hidrogen.

Alat :

  1. Pembakar bunsen
  2. Statif
  3. Tabung reaksi

Bahan

  1. Gula pasir
  2. Katalis CuO. Katalis adalah zat kimia yang dapat mempercepat reaksi.
  3. Ca(OH)2 1%

Langkah Kerja :

alat Identifikasi Karbon dan Hidrogen

  1. Susun alat seperti gambar di atas.
  2. Campurkan gula pasir halus dengan CuO.
  3. Panaskan campuran tersebut.
  4. Hasil reaksi dilewatkan ke dalam larutan Ca(OH)2 1%.

Pertanyaan :

  1. Mengapa perlu dilakukan pembakaran gula pasir?
  2. Bagaimana persamaan reaksi pembakaran gula pasir?
  3. Apa yang terjadi ketika gula pasir dipanaskan?
  4. Mengapa perlu digunakan katalis CuO?
  5. Hasil reaksi apa yang didapatkan dalam tabung reaksi?
  6. Jika pembakaran tidak sempurna (pasokan oksigen kurang), bagaimana kemungkinan hasil reaksinya? Tuliskan persamaan reaksinya.
  7. Apa yang dapat Anda simpulkan dari hasil pengamatan tersebut?
Sekilas Kimia
Hans Krebs
(1900–1981)
Hans Krebs
Ahli kimia ini yang kali pertama mengusulkan serangkaian reaksi untuk menerangkan bagaimana glukosa (gula) diuraikan untuk menghasilkan karbon dioksida, air, dan energi.

2.2. Klasifikasi Hidrokarbon

Pada dasarnya, senyawa karbon dapat digolongkan ke dalam senyawa hidrokarbon dan turunannya. Senyawa turunan hidrokarbon adalah senyawa karbon yang mengandung atom-atom lain selain atom karbon dan hidrogen, seperti alkohol, aldehida, protein, dan karbohidrat.

Bagan penggolongan senyawa karbon
Gambar 2. Bagan penggolongan senyawa karbon.
Ditinjau dari cara berikatan karbon-karbon, senyawa hidrokarbon dapat dikelompokkan menjadi dua bagian besar (perhatikan Gambar 2), yaitu:

a. Senyawa hidrokarbon alifatik, yaitu senyawa hidrokarbon yang membentuk rantai karbon dengan ujung terbuka, baik berupa rantai lurus atau bercabang. Senyawa alifatik dibedakan sebagai berikut

1) Senyawa hidrokarbon jenuh adalah senyawa hidrokarbon yang berikatan kovalen tunggal. Contohnya, senyawa alkana.

senyawa alkana

Gas alam dan minyak bumi tergolong hidrokarbon alifatik.

2) Senyawa hidrokarbon tidak jenuh adalah senyawa hidrokarbon yang berikatan kovalen rangkap dua atau rangkap tiga. Contohnya alkena dan alkuna.

b. Senyawa hidrokarbon siklik adalah senyawa hidrokarbon dengan ujung rantai karbon tertutup. Senyawa siklik dibedakan sebagai berikut.

1) Senyawa hidrokarbon alisiklik adalah senyawa golongan alifatik dengan ujung rantai karbon tertutup. Contohnya sikloheksana dan sikloheksena.

2) Senyawa hidrokarbon aromatik adalah senyawa benzena dan turunannya. Contoh hidrokarbon aromatik yaitu benzena, naftalena, toluena, dan sebagainya.

Contoh Soal Klasifikasi Hidrokarbon (3) :

Manakah di antara senyawa karbon berikut yang tergolong hidrokarbon?

a. C4H10 (butana)
b. C4H10O (butanol)
c. C4H8 (siklobutana)
d. C2H4O2 (cuka)
e. C2H2 (asetilen)

Penyelesaian :

Hidrokarbon adalah senyawa karbon yang hanya mengandung karbon dan hidrogen. Jadi, yang tergolong hidrokarbon adalah (a), (c), dan (e).

C. Hidrokarbon Alifatik Jenuh

Berdasarkan jumlah ikatan antara atom karbon, senyawa alifatik dikelompokkan menjadi alifatik jenuh dan tidak jenuh. Pada alifatik jenuh, atom karbon dapat mengikat atom hidrogen secara maksimal. Senyawa yang tergolong alifatik jenuh adalah alkana dan sikloalkana.

3.1. Struktur dan Sifat Alkana

Senyawa golongan alkana paling sederhana adalah metana (CH4) yang terdiri atas satu atom karbon dan empat atom hidrogen (Model molekul pada Gambar 3).
Model molekul CH4
Gambar 4. Model molekul CH4.
Struktur molekul alkana yang lebih panjang, seperti etana, propana, butana, dan yang lainnya membentuk rantai yang memanjang. Struktur alkana dan senyawa karbon umumnya biasa dituliskan dalam bentuk rumus struktur yang dimampatkan, seperti empat deret alkana pertama berikut.

empat deret alkana pertama

a. Deret Homolog

Perhatikan keempat contoh senyawa alkana di atas. Terlihat bahwa dari kiri ke kanan secara berurutan terdapat selisih jumlah gugus –CH2–. Etana kelebihan satu gugus –CH2– dari metana, propana kelebihan satu gugus –CH2– dari etana, dan seterusnya.

Jika dalam suatu deret senyawa terdapat selisih jumlah gugus sebanyak –CH2– secara berurutan maka senyawa-senyawa tersebut merupakan deret homolog. Deret homolog adalah senyawa-senyawa yang memiliki selisih gugus sebanyak –CH2– dari senyawa sebelumnya. Senyawa-senyawa dalam deret homolog memiliki sifat kimia mirip, tetapi sifat-sifat fisika berubah sejalan dengan naiknya massa molekul seperti yang ditunjukkan pada Tabel 1.

Tabel 1. Titik Leleh dan Titik Didih Alkana Rantai Lurus Berdasarkan Deret Homolog

Nama Senyawa
Rumus Molekul
Wujud Zat
Massa Molekul
Titik Leleh
(°C)
Titik Didih
(°C) 
Metana
CH4
Gas
16
–182,5
–164,0
Etana
C2H6
Gas
30
–183,3
–88,6
Propana
C3H8
Gas
44
–189,7
–42,1
Butana
C4H10
Gas
58
–138,4
0,5
Pentana
C5H12
Cair
72
–139,7
36,1
Heksana
C6H14
Cair
86
–95,0
68,9
Heptana
C7H16
Cair
100
–90,6
98,4
Oktana
C8H18
Cair
114
–56,8
124,7
Nonana
C9H20
Cair
128
–51,0
150,8
Dekana
C10H22
Cair
142
–29,7
174,1
Sumber: Chemistry(Zumdahl),1989

Simak Tabel 1, tentu Anda dapat melihat kecenderungan yang teratur antara titik didih dan titik leleh dengan naiknya massa molekul relatif alkana. Dengan demikian, terdapat hubungan antara massa molekul relatif alkana dan sifat-sifat fisikanya.

Dengan bertambahnya massa molekul, sifat fisika yang lain seperti wujud zat juga berubah. Pada suhu kamar, empat deret pertama alkana berupa gas, deret berikutnya cair, dan alkana yang lebih tinggi berwujud padat, misalnya aspal dan lilin.

Semua alkana dapat bereaksi dengan oksigen membentuk gas karbondioksida dan uap air. Persamaan reaksinya dapat ditulis sebagai berikut :

CnH2n+2 + O2(g) → n CO2(g) + (n+1) H2O(g)

b. Rumus Umum Alkana

Jika dicermati dengan saksama, deret homolog alkana memiliki keteraturan yang dapat dirumuskan secara matematika. Dapatkah Anda menentukan rumus umum alkana?

Dalam deret homolog terdapat selisih gugus sebanyak –CH2–. Jika tambahannya sebanyak n gugus maka dapat ditulis sebagai (–CH2–)n atau –CnH2n–. Dalam metana, kedua garis pada rumus –CnH2n– menunjukkan jumlah atom hidrogen.

Struktur molekul oktana (C8H18)
Struktur molekul oktana (C8H18)
3.2. Isomer dan Tata Nama Alkana

Beberapa senyawa alkana sederhana telah Anda pelajari pada bab sebelumnya. Sekarang, akan diperkenalkan tata nama senyawa alkana rantai lurus yang bercabang.

a. Tata Nama pada Alkana

Untuk alkana rantai bercabang, terdapat lima aturan pokok dari IUPAC yang telah disepakati, yaitu sebagai berikut.

1. Nama dasar alkana rantai bercabang ditentukan oleh rantai terpanjang atom karbon. Rantai terpanjang ini disebut rantai induk.

Contoh :

rantai induk alkana benar


rantai induk alkana salah

Rantai induk adalah rantai terpanjang. Pada contoh tersebut rantai induk mengandung 9 gugus, bukan 8 gugus.

2. Setiap cabang pada rantai induk disebut gugus alkil. Nama gugus alkil didasarkan pada nama alkana semula, tetapi akhiran -ana diganti menjadi -il. Contoh: metana menjadi metil. Perhatikan Tabel 2. Pada contoh nomor 1, terdapat satu gugus etil sebagai cabang dari rantai induk.

Tabel 2. Nama Gugus-Gugus Alkil pada Rantai Induk Alkana

Nama Gugus-Gugus Alkil pada Rantai Induk Alkana

3. Gugus alkil yang terikat pada rantai induk diberi nomor dengan urutan terkecil. Penomoran gugus alkil adalah sebagai berikut.

Penomoran gugus alkil

Dengan demikian, gugus etil diposisikan pada atom karbon nomor 4 dari rantai induk, bukan nomor 6. Jadi, nama untuk senyawa alkana di atas adalah 4-etilnonana, bukan 6-etilnonana.
Neopentana 2,2-dimetilpropana

4. Jika terdapat lebih dari satu gugus alkil yang sama maka penulisan nama gugus ditambah kata depan di–(dua gugus), tri–(tiga gugus), atau tetra–(empat gugus) yang diikuti dengan nama gugus alkil. Lihat contoh struktur berikut.

5-dietilnonana

Nama senyawanya adalah 4,5-dietilnonana bukan 4-etil-5-etilnonana

5. Jika terdapat dua atau lebih cabang alkil yang berbeda, penulisan nama setiap cabang diurutkan berdasarkan alfabetis, seperti contoh berikut.

4-etil-5-metilnonana
Nama senyawanya adalah 4-etil-5-metilnonana, bukan 5-metil-4- etilnonana.

Perhatikan beberapa aturan tambahan berikut.

  1. Nomor posisi dan nama gugus dipisahkan oleh garis, misalnya 2-metil, 3-etil, dan seterusnya.
  2. Nama gugus dan nama rantai induk disatukan (tidak dipenggal). Contoh: metilheksana bukan metil heksana, etilpentana bukan etil pentana.
  3. Jika terdapat lebih dari dua nomor berurutan maka penulisan nomor dipisah oleh koma. Contoh: 3,3-dimetil atau 1,2,3-trietil, dan seterusnya.

Sekilas Kimia
Gas Minyak Bumi yang dicairkan (LPG)

Propana (t.d = –42 °C) adalah alkana yang umum digunakan untuk memasak dan memanaskan atau lebih dikenal sebagai gas LPG. Keuntungan penggunaan propana di banding metana, yaitu propana mudah dicairkan di bawah tekanan sehingga gas dapat di simpan dengan jumlah yang besar dalam ruang yang kecil. Cairan tidak akan membakar sampai propana berubah menjadi fasa gas sehingga relatif lebih mudah dan aman untuk disimpan dan dipindahkan. Pada suhu dingin, penggunaan propana lebih menguntungkan dibandingkan butana. Butana memiliki titik didih yang relatif tinggi (t.d -0,5 °C), berarti pada cuaca dingin, cairan butana tidak akan menguap sehingga tidak membakar. (Sumber: Heinemann Advanced Science: Chemistry, 2000)

Contoh Soal Penataan Nama Senyawa Hidrokarbon Alifatik (4) :

1. Tuliskan nama untuk senyawa berikut.
5-etil-2-metiloktana
2. Gambarkan struktur molekul dari senyawa berikut:

a. 2,2-dimetil-5-isopropilnonana
b. 2,4-dimetil-5-propildekana

Pembahasan :

1. Tahap penentuan nama senyawa tersebut, yaitu:

a. tentukan rantai induk;
b. tentukan gugus alkil;
c. tentukan nomor terkecil untuk gugus alkil.

Pada struktur soal, rantai induknya sebanyak 8 gugus (oktana) dengan 2 buah gugus alkil, yaitu metil dengan nomor urut 2 dan etil dengan nomor urut 5. Jadi, nama senyawa itu adalah 5-etil-2-metiloktana.

2.
2,2-dimetil-5-isopropilnonana

2,4-dimetil-5-propildekana
b. Isomer pada Alkana

Struktur alkana dapat berupa rantai lurus atau rantai bercabang. Dalam senyawa alkana juga ada yang rumus molekulnya sama, tetapi rumus strukturnya beda.

Butana memiliki rumus molekul C4H10. Selain itu, ada senyawa yang rumus molekulnya sama dengan butana, tetapi rumus strukturnya berbeda dan namanya juga berbeda. Perhatikan rumus struktur berikut.
Bentuk isomer struktur butana

n-butana


Isobutana (2-metilpropana)
Kedua senyawa tersebut dapat disintesis dan memiliki titik didih dan titik leleh berbeda. Senyawa n-butana titik didih dan titik lelehnya secara berturut-turut –0,5 °C dan –135 °C. Adapun senyawa isobutana atau 2-metilpropana titik didih dan titik lelehnya secara berturut-turut –10 °C dan –145 °C.

Semakin banyak jumlah atom karbon dalam senyawa alkana, kemungkinan rumus struktur juga makin banyak. Oleh karena itu, jumlah isomer struktur juga akan bertambah. Pentana (C5H12.) memiliki 3 isomer struktur, heksana (C6H14.) memiliki 5 isomer struktur, dan dekana memiliki 75 isomer struktur. Struktur berikut merupakan ketiga isomer dari pentana.
n-pentana



Isopentana (2-metilbutana)
Oleh karena strukturnya berbeda maka sifat-sifat fisika senyawa yang berisomer juga berbeda, tetapi sifat kimianya mirip. Perhatikan titik didih dan titik leleh isomer butana dan isomer pentana.

Isobutana (alkana yang bercabang) memiliki titik didih dan titik leleh lebih rendah dibandingkan n-butana(yang tidak bercabang). Hal ini disebabkan oleh struktur yang lebih rumit pada isobutana mengakibatkan gaya tarik antarmolekul lebih kecil dibandingkan struktur rantai lurus sehingga lebih mudah menguap.

Pada senyawa pentana, titik didih dan titik leleh berkurang menurut urutan: n-pentana > isopentana > neopentana. Hal ini akibat dari bentuk struktur, yaitu neopentana lebih rumit dibandingkan isopentana. Demikian juga isopentana lebih rumit dari n-pentana.
Neopentana (2,2-dimetilpropana)
D. Hidrokarbon Alifatik Tidak Jenuh

Hidrokarbon tidak jenuh adalah hidrokarbon dengan satu atau lebih atom karbon mengikat atom hidrogen tidak maksimal atau memiliki ikatan rangkap. Alkena memiliki ikatan rangkap dua karbon-karbon (C=C) dan alkuna memiliki ikatan rangkap tiga karbon-karbon (C ≡ C).

4.1. Struktur dan Sifat Alkena

Alkena paling sederhana adalah etena yang memiliki rumus mampat CH2 = CH2 . Dalam alkena terdapat sekurang-kurangnya satu buah ikatan rangkap dua karbon-karbon, seperti pada Gambar 4.
Model struktur molekul etena
Gambar 4. Model struktur molekul etena.
Tiga deret pertama dari alkena rantai lurus dapat ditulis dalam bentuk struktur mampat sebagai berikut.
etena propena 1-butena 2-butena
Sama halnya dengan alkana, senyawa-senyawa dalam golongan alkena membentuk deret homolog, dengan selisih antarsenyawa yang berurutan sebanyak –CH2–.

Secara umum, sifat fisika deret homolog alkena mirip dengan sifat fisika alkana, yakni makin besar massa molekul makin tinggi titik didih dan titik lelehnya.

etena propena 2-butena
Tabel 3. Sembilan Deret Pertama Alkena Rantai Lurus

Rumus Molekul            
Tata Nama
C2H4
Etena
C3H6
Propena
C4H8
Butena
C5H10
Pentena
C6H12
Heksena
C7H14
Heptena
C8H16
Oktena
C9H18                         
Nonena
C10H20
Dekena         

Praktikum Kimia Menguji Hidrokarbon Tidak Jenuh (2) :

Tujuan :

Menguji senyawa hidrokarbon tidak jenuh pada margarin

Alat :

Tabung reaksi

Bahan :

  1. Margarin
  2. Air Brom

Langkah Kerja :

Menguji Hidrokarbon Tidak Jenuh

  1. Masukkan sedikit air brom ke dalam tabung reaksi.
  2. Tambahkan margarin atau mentega ke dalam air brom.
  3. Amati perubahan yang terjadi.

Pertanyaan :

  1. Apa yang dapat Anda amati dari percobaan tersebut?
  2. Mengapa air brom berubah menjadi tidak berwarna?
  3. Apa yang dapat Anda simpulkan dari hasil pengamatan ini?

4.2. Isomer dan Tata Nama Alkena

Sebelumnya, Anda telah mempelajari isomer dan tata nama alkana. Pada bagian ini, Anda akan mempelajari isomer dan tata nama pada alkena. Prinsipnya sama dengan alkana, namun ada beberapa perbedaan dalam hal jenis isomernya.

a. Tata Nama pada Alkena

Tata nama alkena didasarkan pada rantai terpanjang yang mengandung ikatan rangkap dua karbon-karbon. Seperti pada alkana, rantai terpanjang ini merupakan rantai induk. Atom karbon rantai terpanjang diberi nomor mulai dari ujung rantai yang terdekat pada ikatan rangkap dua karbon-karbon sehingga posisi ikatan rangkap memiliki nomor terkecil. Aturan pencabangan sama seperti yang diberlakukan pada alkana.

Jika dalam molekul alkena terdapat lebih dari satu ikatan rangkap dua maka namanya ditambah di- ...-ena, misalnya 1,3-butadiena dan 1,3,5- dekatriena.

Contoh Soal Penulisan Nama Alkena Menurut IUPAC (5) :

Apa nama senyawa alkena berikut menurut aturan IUPAC?

2-metil-2-pentena
dan
3-butil-2,7-nonadiena
Pembahasan :

a. Penomoran rantai karbon adalah :

Penomoran rantai karbon 2-metil-2-pentena
Rantai terpanjang yang mengandung ikatan rangkap dua karbon-karbon memiliki lima atom karbon maka senyawa ini adalah 2-pentena. Posisi ikatan rangkap dua berada pada atom karbon nomor 2. Gugus metil juga terikat pada atom karbon nomor 2 sehingga nama lengkap senyawa ini adalah 2-metil-2-pentena.

b. Rantai induk yang mengandung ikatan rangkap dua karbon-karbon adalah dari kanan ke arah bawah, yaitu sebanyak sembilan gugus, dua ikatan rangkap, dan gugus cabang adalah butil. Jadi, nama senyawa ini adalah 3-butil-2,7-nonadiena.

b. Isomer pada Alkena

Perhatikan struktur molekul berikut.
1-butena 2-butena 2-metil-2-propena
Ketiga struktur tersebut memiliki rumus molekul sama, yakni C4H8, tetapi strukturnya beda. Jadi, dapat dikatakan bahwa ketiga senyawa itu berisomer struktur satu sama lain.

Bagaimana Anda menjelaskan perbedaan titik didih dari ketiga senyawa tersebut? Hubungkan dengan tingkat kerumitan molekul. Makin rumit struktur molekul, makin rendah titik didihnya. Ikatan rangkap dua karbon-karbon pada alkena tidak dapat memutar (melintir) sebab jika diputar akan memutuskan ikatan rangkap, tentunya memerlukan energi cukup besar. Oleh karena itu, alkena dikatakan memiliki struktur yang rigid (tegar) seperti ditunjukkan pada Gambar 5.
Pada alkena, tidak terjadi perputaran ikatan rangkap pada sumbu rotasinya.
Gambar 5. Pada alkena, tidak terjadi perputaran ikatan rangkap pada sumbu rotasinya.
Akibat dari ketegaran, ikatan rangkap menimbulkan isomer tertentu pada alkena. Pada contoh berikut, ada dua isomer untuk 2-butena (CH3CH=CHCH3), yaitu cis-2-butena dan trans-2-butena.

cis-2-butena dan trans-2-butena
Isomer pada cis-2-butena dan trans-2-butena dinamakan isomer geometri. Isomer geometri adalah isomer yang terjadi akibat perbedaan lokasi atom-atom atau gugus atom dalam ruang tiga dimensi, sedangkan rumus molekul dan gugus terikatnya sama. Perbedaan titik didih antara cis-2-butena (3,7 °C) dan trans-2-butena (0,9 °C) menunjukkan bahwa kedua senyawa ini benar-benar ada dan berbeda, walaupun keduanya memiliki rumus molekul sama (C4H8) dan gugus terikatnya sama.

Pada alkena, selain isomer geometri dan isomer struktur, juga dikenal isomer posisi. Isomer posisi adalah isomer yang memiliki perbedaan posisi ikatan rangkap karbon-karbon dalam molekul yang sama. Contoh: 1-
butena dan 2-butena.

Contoh Soal Meramalkan Isomer Geometri pada Alkena (6) :

Pada senyawa alkena berikut, apakah terdapat isomer geometri? Jika ada, gambarkan bentuk geometrinya dan berikan nama menurut IUPAC.

a. CH3CH2CH=C(CH3)2
b. CH3CH=CHCH2CH3

Kunci Jawaban :

a. Rumus strukturnya adalah

2-metil-2-pentena
Oleh karena terdapat dua gugus metil terikat pada atom kabon rangkap dua yang sama maka isomer geometri tidak terjadi pada senyawa ini sebab jika kedua gugus metil itu dipertukarkan lokasinya, tidak mengubah keadaan geometrinya.

b. Isomer geometri pada senyawa ini memungkinkan dapat memiliki geometri berbeda.


cis-2-pentena trans-2-pentena

Contoh Soal Ebtanas 1995-1996 :

Nama yang benar untuk senyawa dengan rumus struktur :
3-metil-3-heksena
A. 2-etil-2-pentena
B. 3-metil-3-heksena
C. 3-metil-3-heptena
D. 2-etil-3-pentena
E. 4-etil-3-pentena

Pembahasan :

Tahapan menentukannya :

3-metil-3-heksena

  1. Posisi ikatan rangkap pada rantai induk alkena dengan rantai terpanjang (6C) sehingga namanya: heksena
  2. osisi ikatan rangkap diberi nama dengan nomor urut terendah. Jika posisi ikatan rangkapnya di tengah. Posisi cabang menjadi prioritas urutan dengan nomor terendah, jadi 3-heksena
  3. Kemudian, beri nama untuk gugus alkilnya, yaitu: 3-metil-3- heksena

Jadi, jawabannya (B).

4.3. Struktur dan Tata Nama Alkuna

Alkuna adalah hidrokarbon tidak jenuh yang mengandung ikatan rangkap tiga karbon-karbon. Alkuna paling sederhana adalah asetilen atau etuna (C2H2), dengan rumus struktur sebagai berikut.

H–C ≡ C–H

Bentuk tiga dimensi dari etuna ditunjukkan pada Gambar 6. Terlihat bahwa bentuk molekulnya adalah linear.

Struktur molekul etuna (asetilen)
Gambar 6. Struktur molekul etuna (asetilen).

Etuna dapat dibuat dengan cara mereaksikan CaC2 dan air yang digunakan sebagai sumber energi las besi, reaksi yang terjadi dapat dilihat pada Gambar 7.

Empat deret pertama dari alkuna dapat ditulis dalam bentuk struktur molekul yang dimampatkan. Perhatikan bentuk struktur molekul berikut.
Etuna Propuna 1-butuna 1-pentuna
Reaksi CaC2(karbida) dan air menghasilkan etuna sebagai sumber energi las besi (las karbida)
Gambar 7. Reaksi CaC2(karbida) dan air menghasilkan etuna sebagai sumber energi las besi (las karbida).
Aturan tata nama alkuna menurut aturan IUPAC sama seperti pada alkana atau alkena. Rantai induk ditentukan oleh rantai terpanjang yang mengandung ikatan rangkap tiga karbon-karbon dan akhiran untuk nama induk adalah -una sebagai pengganti -ana pada alkana.

Isomer yang terjadi pada alkuna adalah isomer posisi ikatan rangkap dan isomer struktur untuk gugus alkil, sedangkan isomer geometri pada alkuna tidak terjadi.

Contoh Soal Penamaan Alkuna Menurut IUPAC (7) :

Tuliskan nama IUPAC dari senyawa berikut.



5-etil-4,8-dimetil-2-dekuna
Kunci Jawaban :

Rantai induk senyawa tersebut adalah dekuna (10 gugus). Ikatan rangkap tiga karbon-karbon terdapat pada atom karbon nomor 2, gugus metil terikat pada atom karbon nomor 4 dan 8, dan gugus etil terikat pada nomor 5. Jadi, namanya adalah 5-etil-4,8-dimetil-2-dekuna.

Contoh Soal Ebtanas 1999-2000 :

Simak kelompok senyawa hidrokarbon berikut:

1. C2H2; C3H4; C4H6
2. C2H4; C3H6; C3H8
3. C2H4; C3H6; C4H8
4. C2H6; C3H8; C4H10
5. C2H6; C3H8; C4H6

Rumus hidrokarbon yang merupakan pasangan kelompok senyawa tidak jenuh adalah …

A. 1 dan 2
B. 1 dan 3
C. 2 dan 3
D. 2 dan 4
E. 4 dan 5

Pembahasan :

Rumus alkana : CnHn+2
Rumus alkena : CnH2n
Rumus alkuna : CnHn–2

Alkena dan alkuna adalah hidrokarbon tidak jenuh. Hidrokarbon yang tidak jenuh terdapat semuanya pada kelompok 1 dan 3 (B).

Rangkuman :
  1. Senyawa hidrokarbon adalah senyawa yang disusun oleh unsur karbon dan hidrogen. Senyawa hidrokarbon terbagi menjadi dua bagian besar, yaitu hidrokarbon alifatik (rantai terbuka) dan hidrokarbon siklik (rantai tertutup).
  2. Pada hidrokarbbon alifatik, senyawa hidrokarbon dapat terdiri atas ikatan jenuh (tunggal) maupun ikatan tidak jenuh (rangkap).
  3. Sifat khas atom karbon adalah dapat membentuk ikatan kovalen dengan semua atom karbon maupun atom unsur lain dapat membentuk ikatan kovalen yang panjang seperti rantai.
  4. Alkana adalah hidrokarbon jenuh, disebut juga parafin. Rumus umum alkana adalah CnH2n+2.
  5. Titik didih alkana makin meningkat sesuai dengan peningkatan jumlah atom karbonnya.
  6. Tata nama senyawa hidrokarbon mengikuti aturan IUPAC.
  7. Alkana dapat mengalami isomer struktur, yaitu senyawa dengan rumus molekul sama tetapi rumus strukturnya berbeda.
  8. Alkena merupakan contoh dari hidrokarbon tidak jenuh berikatan rangkap dua. Alkena memiliki rumus umum CnH2n. Pada alkena, terjadi peristiwa isomer struktur, posisi, dan geometri.
  9. Senyawa hidrokarbon jenuh yang berikatan rangkap tiga adalah alkuna. Alkuna memiliki rumus umum CnH2n-2. Pada alkuna, terjadi isomer posisi dan struktur.
Anda sekarang sudah mengetahui Hidrokarbon. Terima kasih anda sudah berkunjung ke Perpustakaan Cyber.

Referensi :

Sunarya, Y. dan A. Setiabudi. 2009. Mudah dan Aktif Belajar Kimia 1 : Untuk Kelas X Sekolah Menengah Atas / Madrasah Aliyah. Pusat Perbukuan, Departemen Pendidikan Nasional, Jakarta, p. 226.

No comments:

Post a Comment

Berkomentarlah secara bijak. Komentar yang tidak sesuai materi akan dianggap sebagai SPAM dan akan dihapus.
Aturan Berkomentar :
1. Gunakan nama anda (jangan anonymous), jika ingin berinteraksi dengan pengelola blog ini.
2. Jangan meninggalkan link yang tidak ada kaitannya dengan materi artikel.
Terima kasih.