Thursday, June 5, 2014

Spektrum Gelombang Elektromagnetik, Hipotesis Maxwell, Eksperimen Hertz

Pada bab ini, Anda akan diajak untuk dapat memahami konsep dan prinsip gelombang elektromagnetik dengan cara mendeskripsikan spektrum gelombang elektromagnetik serta menjelaskan aplikasi gelombang elektromagnetik pada kehidupan sehari-hari. Ketika Anda sedang mendengarkan acara di salah satu stasiun radio kesayangan Anda, pernahkah Anda berpikir bagaimana caranya suara yang keluar dari radio dapat Anda dengar dengan jelas? Gelombang yang diterima pada radio Anda adalah gelombang radio dan termasuk ke dalam gelombang elektromagnetik. Selain gelombang radio, masih banyak lagi jenis gelombang yang termasuk ke dalam gelombang elektromagnetik. Teknologi komunikasi saat ini tidak dapat lepas dari peranan gelombang elektromagnetik. Pemakaian telepon selular (telepon genggam) sebagai sarana telekomunikasi menjadikan komunikasi lebih mudah dan efisien. Dalam komunikasi menggunakan telepon selular dan teknologi satelit yang menjadi pembawa informasi adalah gelombang elektromagnetik. Tahukah Anda apa yang dimaksud dengan gelombang elektromagnetik? Bagaimanakah gelombang elektromagnetik merambat? Dapatkah Anda menjelaskan sifat-sifatnya? Untuk lebih memahami materi mengenai gelombang elektromagnetik, pelajarilah bahasan-bahasan berikut ini.

Dewasa ini, penggunaan gelombang elektromagnetik semakin luas. Sistem komunikasi radio, televisi, telepon genggam, dan radar merupakan beberapa contoh penggunaan gelombang elektromagnetik. Dunia terasa begitu kecil sehingga berbagai peristiwa yang terjadi di belahan bumi, tidak peduli jauhnya, dapat segera diketahui dan disebarluaskan melalui sarana yang memanfaatkan gelombang elektromagnetik, bahkan dunia di luar bumi. Berbeda dengan gelombang mekanik yang telah Anda pelajari, gelombang elektromagnetik tidak memerlukan medium untuk merambat. Pada bab ini, Anda akan mempelajari mengenai gelombang elektromagnetik, mulai dari terbentuknya, sifat-sifatnya, hingga jenis-jenis spektrumnya.

A. Hipotesis Maxwell


Tahukah Anda, siapakah yang kali pertama mengemukakan teori gelombang elektromagnetik? Teori gelombang elektromagnetik kali pertama dikemukakan oleh James Clerk Maxwell (1831–1879). Ini berawal dari beberapa hukum dasar yang telah dipelajari, yakni Hukum Coulomb, Hukum Biot-Savart atau Hukum Ampere, dan Hukum Faraday. Hukum Coulomb memperlihatkan bagaimana muatan listrik dapat menghasilkan medan listrik, Hukum Biot-Savart atau Hukum Ampere menjelaskan bagaimana arus listrik dapat menghasilkan medan magnet, dan Hukum Faraday menyatakan bahwa perubahan medan listrik dapat menghasilkan gaya gerak listrik (GGL) induksi. Maxwell melihat adanya keterkaitan yang sangat erat antara gejala kelistrikan dan kemagnetan. Ia mengemukakan bahwa jika perubahan medan magnetik menghasilkan medan listrik, seperti yang dikemukakan oleh hukum Faraday, dan hal sebaliknya dapat terjadi, yakni perubahan medan listrik dapat menimbulkan perubahan medan magnet.

Catatan Fisika :


Panas dan Spektrum
eksperimen Herschel

Pada eksperimen ini, Herschel menguji kekuatan setiap warna yang ada di spektrum. Ia membelah cahaya dengan menggunakan prisma dan spektrum warna itu jatuh ke layar yang dibelah sedikit. Cahaya dari satu warna menerobos celah kecil itu dan jatuh pada sebuah termometer. Ia juga melakukan eksperimen untuk mengetahui apakah ''cahaya yang tidak tampak'', yaitu inframerah, dapat dibiaskan. Ternyata, cahaya inframerah tersebut memang dapat dibiaskan. (Sumber: Jendela Iptek, 1997)

Maxwell menurunkan beberapa persamaan yang berujung pada hipotesisnya mengenai gelombang elektromagnetik. Persamaan tersebut dikenal sebagai Persamaan Maxwell, tetapi Anda tidak perlu menurunkan atau membahas secara mendalam persamaan tersebut. Menurut Maxwell, ketika terdapat perubahan medan listrik (E), akan terjadi perubahan medan magnetik (B). Perubahan medan magnetik ini akan menimbulkan kembali perubahan medan listrik dan seterusnya. Maxwell menemukan bahwa perubahan medan listrik dan perubahan medan magnetik ini menghasilkan gelombang medan listrik dan gelombang medan magnetik yang dapat merambat di ruang hampa. Gelombang medan listrik (E) dan medan magnetik (B) inilah yang kemudian dikenal dengan nama gelombang elektromagnetik.

Perambatan gelombang elektromagnetik dapat dilihat pada Gambar 1.
Medan listrik dan medan magnetik dalam gelombang elektromagnetik.
Gambar 1. Medan listrik dan medan magnetik dalam gelombang elektromagnetik.
Perhatikan bahwa arah getar dan arah rambat gelombang medan listrik dan medan magnetik saling tegak lurus sehingga gelombang elektromagnetik termasuk gelombang transversal. Akan tetapi, gelombang elektromagnetik adalah gelombang medan dan bukan gelombang partikel, seperti pada air atau pada tali. Oleh karena gelombang medan inilah, gelombang elektromagnetik dapat merambat di ruang hampa. Kecepatan perambatan gelombang elektromagnetik bergantung pada permitivitas listrik dan permeabilitas magnetik medium. Maxwell menyatakan bahwa kecepatan gelombang elektromagnetik memenuhi persamaan:

                             (1-1)

dengan :

ε = permitivitas listrik medium,
μ = permeabilitas magnetik medium di ruang hampa,
ε = ε0  = 8,85 × 10-12 C2 / Nm2, dan
μ = μ0  = 4π × 10-7 Ns2/C2.

maka kecepatan gelombang elektromagnetik :


Besar kecepatan gelombang elektromagnetik di ruang hampa sama dengan kecepatan cahaya yang terukur.

Contoh Soal 1 :

Gelombang elektromagnetik dalam suatu medium memiliki kelajuan 2,8 × 108 m/s. Jika permitivitas medium 12,76 × 10-7 wb/Am, tentukanlah permeabilitas maksimumnya.

Kunci Jawaban :

Diketahui: 
c = 2,8 × 108 m/s, dan
ε = 12,76 × 10-7 wb/Am.
Dengan menggunakan Persamaan (1-1), diperoleh :

μ = 2,7 × 10-3 wb/Am

B. Bukti Hipotesis Maxwell (Eksperimen Hertz)


Anda telah mempelajari hipotesis Maxwell tentang gelombang elektromagnetik. Apakah Anda ingin mengetahui pembuktian dari hipotesis Maxwell tersebut? Pada subbab ini, Anda akan mempelajari tentang bukti hipotesis Maxwell melalui eksperimen yang dilakukan oleh Heinrich Hertz. Kecepatan perambatan gelombang elektromagnetik di ruang hampa yang dihitung oleh Maxwell, memiliki besar yang sama dengan kecepatan perambatan cahaya. Berdasarkan hasil ini, Maxwell mengemukakan bahwa cahaya merupakan gelombang elektromagnetik. Gagasan ini secara umum diterima oleh para ilmuwan, tetapi tidak sepenuhnya hingga akhirnya gelombang elektromagnetik dapat dideteksi melalui eksperimen.

Gelombang elektromagnetik kali pertama dibangkitkan dan dideteksi melalui eksperimen yang dilakukan oleh Heinrich Hertz (1857–1894) pada tahun 1887, delapan tahun setelah kematian Maxwell. Hertz menggunakan peralatan, seperti yang ditunjukkan pada Gambar 2.
Bagan percobaan Hertz. Dengan menggetarkan pemutus arus, terjadi getaran listrik pada rangkaian sekunder yang nampak sebagai loncatan bunga api A. Pada kawat yang dilekukkan sampai ujungujungnya berdekatan tampak terlihat adanya loncatan bunga api B.
Gambar 2. Bagan percobaan Hertz. Dengan menggetarkan pemutus arus, terjadi getaran listrik pada rangkaian sekunder yang nampak sebagai loncatan bunga api A. Pada kawat yang dilekukkan sampai ujungujungnya berdekatan tampak terlihat adanya loncatan bunga api B.
Ketika sakelar S digetarkan, induktor (kumparan) Ruhmkorf menginduksikan pulsa tegangan pada kumparan kedua yang terhubung pada dua buah elektrode bola. Akibatnya, muatan listrik loncat secara bolak-balik dari satu bola ke bola lainnya dan menimbulkan percikan. Ternyata, kedua elektrode bola pada cincin kawat di sebelahnya juga menampakkan percikan. Ini menunjukkan bahwa energi gelombang yang dihasilkan oleh gerak bolak-balik muatan pada kedua elektrode pertama telah berpindah kepada elektrode kedua pada cincin kawat. Gelombang ini kemudian diukur kecepatannya dan tepat sama dengan hasil perhitungan Maxwell, yakni 3 × 108 m/s. Selain itu, gelombang ini juga menunjukkan semua sifat cahaya seperti pemantulan, pembiasan, interferensi, difraksi, dan polarisasi. Hasil eksperimen Hertz ini merupakan pembuktian dari teori Maxwell.

Sifat-sifat gelombang elektromagnetik yang didasarkan dari eksperimen, yaitu sebagai berikut.
  1. Merupakan perambatan getaran medan listrik dan medan magnet yang saling tegak lurus terhadap arah rambatnya dan termasuk gelombang transversal,
  2. Tidak bermuatan listrik sehingga tidak dipengaruhi atau tidak dibelokkan oleh medan listrik atau medan magnet,
  3. Tidak bermassa dan tidak dipengaruhi medan gravitasi,
  4. Merambat dalam lintasan garis lurus,
  5. Dapat merambat di ruang hampa,
  6. Dapat mengalami pemantulan, pembiasan, interferensi, difraksi, serta polarisasi, dan
  7. Kecepatannya di ruang hampa sebesar 3 × 108 m/s.

C. Spektrum Gelombang Elektromagnetik


Jauh sebelum Maxwell meramalkan gelombang elektromagnetik, cahaya telah dipandang sebagai gelombang. Akan tetapi, tidak seorang pun tahu jenis gelombang apakah cahaya itu. Baru setelah adanya hasil perhitungan Maxwell tentang kecepatan gelombang elektromagnetik dan bukti eksperimen oleh Hertz, cahaya dikategorikan sebagai gelombang elektromagnetik. Tidak hanya cahaya yang termasuk gelombang elektromagnetik melainkan masih banyak lagi jenis-jenis yang termasuk gelombang elektromagnetik. Gelombang elektromagnetik telah dibangkitkan atau dideteksi pada jangkauan frekuensi yang lebar. Jika diurut dari frekuensi terbesar hingga frekuensi terkecil, yaitu sinar gamma, sinar-X, sinar ultraviolet, sinar tampak (cahaya), sinar inframerah, gelombang mikro (radar), gelombang televisi, dan gelombang radio. Gelombang-gelombang ini disebut spektrum gelombang elektromagnetik. Jangkauan frekuensi spektrum gelombang elektromagnetik ditunjukkan pada Gambar 3.
Spektrum gelombang elektromagnetik.
Gambar 3. Spektrum gelombang elektromagnetik.

1. Sinar Gamma


Sinar gamma merupakan salah satu spektrum gelombang elektromagnetik yang memiliki frekuensi paling besar atau panjang gelombang terkecil. Frekuensi yang dimiliki sinar gamma berada dalam rentang 1020 Hz sampai 1025 Hz. Sinar gamma dihasilkan dari peristiwa peluruhan inti radioaktif. Inti atom unsur yang tidak stabil meluruh menjadi inti atom unsur lain yang stabil dengan memancarkan sinar radioaktif, di antaranya sinar alfa, sinar beta, dan sinar gamma. Di antara ketiga sinar radioaktif ini, yang termasuk gelombang elektromagnetik adalah sinar gamma. Sementara dua lainnya merupakan berkas partikel bermuatan listrik. Jika dibandingkan dengan sinar alfa dan sinar beta, sinar gamma memiliki daya tembus yang paling tinggi sehingga dapat menembus pelat logam hingga beberapa sentimeter. Sekarang, sinar gamma banyak dimanfaatkan dalam bidang kedokteran, diantaranya untuk mengobati penyakit kanker dan mensterilkan peralatan rumah sakit. Selain itu, sinar gamma dapat digunakan untuk melihat kerusakan pada logam.

Sinar gamma adalah gelombang pendek yang memiliki frekuensi yang tinggi. Sinar ini dapat membunuh sel dan dapat digunakan untuk mensterilkan peralatan medis dengan membunuh kuman yang terdapat di dalamnya.

2. Sinar-X


Sinar-X, dikenal juga sebagai sinar Röntgen. Nama ini diambil dari penemunya, yaitu Wilhelm C. Röntgen (1845 – 1923). Sinar-X dihasilkan dari peristiwa tumbukan antara elektron yang dipercepat pada beda potensial tertentu. Sinar-X digunakan dalam bidang kedokteran, seperti untuk melihat struktur tulang yang terdapat dalam tubuh manusia. Jika Anda pernah mengalami patah tulang, sinar ini dapat membantu dalam mencari bagian tulang yang patah tersebut. Hasil dari sinar ini berupa sebuah film foto yang dapat menembus hingga pada bagian tubuh yang paling dalam. Orang yang sering merokok dengan yang tidak merokok akan terlihat bedanya dengan cara menyinari bagian tubuh, yaitu paru-paru. Paru-paru orang yang merokok terlihat bercak-bercak berwarna hitam, sedangkan pada normalnya paru-paru manusia cenderung utuh tanpa bercak.

Catatan Fisika :

Sinar Kosmik

Pancaran yang mengandung energi terbesar yang ada adalah sinar kosmik. Sinar ini berisi partikel-partikel renik inti atom serta beberapa elektron dan sinar gamma. Radiasi kosmik membom atmosfer bumi dari tempat-tempat yang jauh dari ruang angkasa. (Sumber: Jendela Iptek, 1997)

3. Sinar Ultraviolet


Sinar ultraviolet dihasilkan dari radiasi sinar Matahari. Selain itu, dapat juga dihasilkan dari transisi elektron dalam orbit atom. Jangkauan frekuensi sinar ultraviolet, yaitu berkisar diantara 105 hertz sampai dengan 1016 hertz. Sinar ultraviolet dapat berguna dan dapat juga berbahaya bagi kehidupan manusia. Sinar ultraviolet dapat dimanfaatkan untuk mencegah agar bayi yang baru lahir tidak kuning warna kulitnya. Selain itu, sinar ultraviolet yang berasal dari Matahari dapat merangsang tubuh manusia untuk memproduksi vitamin D yang diperlukan untuk kesehatan tulang.

Sinar ultraviolet tidak selamanya bermanfaat. Lapisan ozon di atmosfer Bumi (pada lapisan atmosfer) berfungsi untuk mencegah supaya sinar ultraviolet tidak terlalu banyak sampai ke permukaan Bumi. Jika hal tersebut terjadi, akan menimbulkan berbagai penyakit pada manusia, terutama pada kulit. Sekarang, lapisan ozon telah berlubang-lubang sehingga banyak sinar ultraviolet yang tertahan untuk sampai ke permukaan Bumi. Berlubangnya lapisan ozon, di antaranya diakibatkan oleh penggunaan CFC (clorofluoro carbon) yang berlebihan, yang dihasilkan oleh kulkas atau mesin pengondisi udara (AC). Hal ini tentu saja dapat mengancam kehidupan makhluk hidup di Bumi. Oleh karena itu, diharapkan untuk mengurangi jumlah pemakaian yang menggunakan bahan CFC, seperti sekarang telah banyak mesin pendingin non CFC.

Catatan Fisika :

Penemuan Ultraviolet

Pada 1801, Wilhelm Ritter (1776–1800) menyelidiki energi cahaya dari bagian-bagian spektrum yang berbeda. Untuk itu, ia menggunakan potongan-potongan kertas yang dicelupkan ke dalam larutan nitrat perak. Jika cahaya jatuh pada nitrat perak, terjadilah reaksi kimia yang menghasilkan butiran-butiran perak kecil. Butiran-butiran tersebut berwarna hitam sehingga menyebabkan nitrat perak berubah warna menjadi gelap. (Sumber: Jendela Iptek, 1997)

4. Sinar Tampak


Sinar tampak atau cahaya merupakan gelombang elektromagnetik yang dapat dilihat dan sangat membantu dalam penglihatan. Anda tidak akan dapat melihat apapun tanpa bantuan cahaya. Sinar tampak memiliki jangkauan panjang gelombang yang sempit, mulai dari 400 nm sampai dengan 700 nm. Sinar tampak terdiri atas tujuh spektrum warna, jika diurutkan dari frekuensi terkecil ke frekuensi terbesar, yaitu merah, jingga, kuning, hijau, biru, nila, dan ungu (disingkat mejikuhibiniu). Sinar tampak atau cahaya digunakan sebagai penerangan ketika di malam hari atau ditempat yang gelap. Selain sebagai penerangan, sinar tampak digunakan juga pada tempat-tempat hiburan, rumah sakit, industri, dan telekomunikasi.

5. Sinar Inframerah


Sinar inframerah memiliki jangkauan frekuensi antara 1011 hertz sampai 1014 hertz. Sinar inframerah dihasilkan dari transisi elektron dalam orbit atom. Benda yang memiliki temperatur yang lebih relatif terhadap lingkungannya akan meradiasikan sinar inframerah, termasuk dari dalam tubuh manusia. Sinar ini dimanfaatkan, di antaranya untuk pengindraan jarak jauh, transfer data ke komputer, dan pengendali jarak jauh (remote control). Seorang tentara yang sedang berperang dapat melihat musuhnya dalam kegelapan dengan bantuan kacamata inframerah yang dapat melihat hawa panas dari seseorang. Dengan menggunakan kacamata ini dengan sangat mudah seseorang dapat ditemukan dalam ruangan gelap. Sinar inframerah dapat digunakan juga dalam bidang kedokteran, seperti diagnosa kesehatan. Sirkulasi darah dalam tubuh Anda dapat terlihat dengan menggunakan bantuan sinar inframerah. Selain itu, penyakit seperti kanker dapat dideteksi dengan menyelidiki pancaran sinar inframerah dalam tubuh Anda.

6. Gelombang Mikro


Gelombang mikro dihasilkan oleh rangkaian elektronik yang disebut osilator. Frekuensi gelombang mikro sekitar 1010 Hz. Gelombang mikro disebut juga sebagai gelombang radio super high frequency. Gelombang mikro digunakan, di antaranya untuk komunikasi jarak jauh, radar (radio detection and ranging), dan memasak (oven). Di pangkalan udara, radar digunakan untuk mendeteksi dan memandu pesawat terbang untuk mendarat dalam keadaan cuaca buruk. Antena radar memiliki dua fungsi, yaitu sebagai pemancar gelombang dan penerima gelombang. Gelombang mikro yang dipancarkan dilakukan secara terarah dalam bentuk pulsa. Ketika pulsa dipancarkan dan mengenai suatu benda, seperti pesawat atau roket pulsa akan dipantulkan dan diterima oleh antena penerima, biasanya ditampilkan dalam osiloskop. Jika diketahui selang waktu antara pulsa yang dipancarkan dengan pulsa yang diterima Δt dan kecepatan gelombang elektromagnetik c = 3 × 108 m/s, jarak antara radar dan benda yang dituju (pesawat atau roket), dapat dituliskan dalam persamaan berikut :
dengan:

s = jarak antara radar dan benda yang dituju (m),
c = kecepatan gelombang elektromagnetik (3 × 108 m/s), dan
Δt = selang waktu (s).

Angka 2 yang terdapat pada Persamaan (1–2) muncul karena pulsa melakukan dua kali perjalanan, yaitu saat dipancarkan dan saat diterima. Saat ini radar sangat membantu dalam pendaratan pesawat terbang ketika terjadi cuaca buruk atau terjadi badai. Radar dapat berguna juga dalam mendeteksi adanya pesawat terbang atau benda asing yang terbang memasuki suatu wilayah tertentu.

7. Gelombang Radio


Mungkin Anda sudah tahu atau pernah mendengar gelombang ini. Gelombang radio banyak digunakan, terutama dalam bidang telekomunikasi, seperti handphone, televisi, dan radio. Di antara spektrum gelombang elektromagnetik, gelombang radio termasuk ke dalam spektrum yang memiliki panjang gelombang terbesar dan memiliki frekuensi paling kecil. Gelombang radio dihasilkan oleh elektron pada kawat penghantar yang menimbulkan arus bolak-balik pada kawat. Kenyataannya arus bolak-balik yang terdapat pada kawat ini, dihasilkan oleh gelombang elektromagnetik. Gelombang radio ini dipancarkan dari antena pemancar (transmitter) dan diterima oleh antena penerima (receiver). Jika dibedakan berdasarkan frekuensinya, gelombang radio dibagi menjadi beberapa band frekuensi. Nama-nama band frekuensi beserta kegunaannya dapat Anda lihat pada tabel berikut ini.

Tabel 1. Rentang Frekuensi Gelombang Radio

No
Nama Band
Singkatan
Frekuensi
Gelombang
Contoh Penggunaan
1.
Extremely Low Frequency
ELF
(3 – 30) Hz
(105 – 104) km
Komunikasi dengan bawah laut
2.
Super Low Frequency
SLF
(30 – 300) Hz
(104 – 103) km
Komunikasi dengan bawah laut
3.
Ultra Low Frequency
ULF
(300 – 3000) Hz
(103 – 102) km
Komunikasi di dalam pertambangan
4.
Very Low Frequency
VLF
(3 – 30) KHz
(102 – 104) km
Komunikasi di bawah laut
5.
Low Frequency
LF
(30 – 300) KHz
(10 – 1) km
Navigasi
6.
Medium Frequency
MF
(300 – 3000) KHz
(1 – 10–1) km
Siaran radio AM
7.
High Frequency
HF
(3 – 30) MHz
(10–1 – 10–2) km
Radio amatir
8.
Very High Frequency
VHF
(30 – 300) MHz
(10–2 – 10–3) km
Siaran radio FM dan televisi
9.
Ultra High Frequency
UHF
(300 – 3000) MHz
(10–3 – 10–4) km
Televisi dan handphone
10.
Super High Frequency
SHF
(3 – 30) GHz
(10–4 – 10–5) km
Wireless LAN
11.
Extremely High Frequency
EHF
(30 – 300) GHz
(10–5 – 10–6) km
Radio astronomi
Sumber: www.en.wikipedia.org

Jika dilihat dari perambatannya, gelombang radio yang dipancarkan oleh antena pemancar sebagian dipantulkan oleh lapisan ionosfer dan sebagian lagi diteruskan. Pada Gambar 4. berikut, menunjukkan perambatan gelombang radio frekuensi sedang dan frekuensi tinggi yang digunakan untuk siaran radio AM (amplitudo modulation) dan FM (frequency modulation) serta televisi.
Pancaran gelombang radio yang diteruskan dan dipantulkan oleh ionosfer.
Gambar 4. Pancaran gelombang radio yang diteruskan dan dipantulkan oleh ionosfer.
Pada gambar tersebut terlihat bahwa frekuensi tinggi jangkauannya relatif lebih sempit jika dibandingkan dengan frekuensi sedang. Hal ini dapat terlihat bahwa frekuensi tinggi kebanyakan tidak dipantulkan oleh lapisan ionosfer. Dari penjelasan ini, Anda dapat mengetahui mengapa siaran radio FM hanya dapat didengar pada daerah tertentu. Ketika Anda berpindah ke tempat atau daerah lainnya nama stasiun radionya sudah berubah dan disesuaikan dengan daerahnya masing-masing. Berbeda halnya dengan radio AM, Jika Anda pergi dari tempat tinggal Anda ke tempat atau daerah lainnya, stasiun radionya masih tetap ada. Hal ini disebabkan oleh jangkauan frekuensi sedang lebih luas jika dibandingkan dengan jangkauan frekuensi tinggi.

Contoh Soal 2 :

Sinar–X jika dilewatkan ke medan listrik tidak akan membelok. 

sebab 

Sinar-X memiliki daya tembus besar.

Kunci Jawaban :

Sinar-X termasuk ke dalam spektrum gelombang elektromagnetik. Salah satu sifat gelombang elektromagnetik adalah tidak dibelokkan oleh medan listrik dan medan magnet.

Sinar-X memiliki frekuensi yang tinggi setelah sinar gamma sehingga sinar-X memiliki daya tembus yang besar.

Pernyataan dan alasan benar, tetapi tidak berhubungan.

Jawab: d

Rangkuman :

1. Gelombang elektromagnetik termasuk gelombang transversal yang dapat merambat di ruang hampa.

2. Dalam perambatannya, kecepatan gelombang elektromagnetik bergantung pada permitivitas listrik (ε0) dan permeabilitas magnetik (μ0) dalam medium :


3. Gelombang elektromagnetik memiliki sifat-sifat:

a. tidak bermuatan listrik,
b. tidak bermassa,
c. merambat dalam lintasan lurus,
d. dapat merambat di ruang hampa,
e. dapat mengalami pemantulan, pembiasan, interferensi, difraksi, dan polarisasi, dan
f. kecepatan di ruang hampa sebesar 3 × 108 m/s.

4. Spektrum gelombang elektromagnetik dibedakan berdasarkan frekuensi dan panjang gelombang.

5. Jenis-jenis spektrum gelombang elektromagnetik:

a. sinar gamma,
b. sinar-X,
c. sinar ultraviolet,
d. cahaya tampak,
e. sinar inframerah,
f. gelombang mikro,
g. gelombang televisi, dan
h. gelombang radio.

Anda sekarang sudah mengetahui Gelombang ElektromagnetikHipotesis Maxwell dan Eksperimen Hertz. Terima kasih anda sudah berkunjung ke Perpustakaan Cyber.

Referensi :

Saripudin, A., D. Rustiawan K., dan A. Suganda. 2009. Praktis Belajar Fisika 1 : untuk Kelas 10 Sekolah Menengah Atas / Madrasah Aliyah Program Ilmu Pengetahuan Alam. Pusat Perbukuan Departemen Nasional, Departemen Pendidikan Nasional, Jakarta. 194 hlm.