Thursday, June 5, 2014

Pengertian dan Fungsi Kapasitor, Kondensator, Jenis-jenis, Polar, Non Polar, Kapasitas, Keping Sejajar, Bola Konduktor, Rangkaian Seri, Paralel, Energi, Rumus, Fisika, Contoh Soal, Jawaban


Kapasitor
Gambar 1. Kapasitor dalam rangkaian elektronik. [1]
Kapasitor atau kondensator adalah alat (komponen) yang dibuat sedemikian rupa sehingga mampu menyimpan muatan listrik yang besar untuk sementara waktu. Sebuah kapasitor terdiri atas keping-keping logam yang disekat satu sama lain dengan isolator. Isolator penyekat disebut zat dielektrik. Simbol yang digunakan untuk menampilkan sebuah kapasitor dalam suatu rangkaian listrik adalah sebagai berikut :
simbol kapasitor
Berdasarkan bahannya, ada beberapa jenis kapasitor, antara lain kapasitor mika, kertas, keramik, plastik, dan elektrolit. Sementara itu, berdasarkan bentuknya dikenal beberapa kapasitor antara lain kapasitor variabel dan kapasitor pipih silinder gulung. Menurut pemasangannya dalam rangkaian listrik, kapasitor dibedakan menjadi kapasitor berpolar, yang mempunyai kutub positif dan kutub negatif. Dan juga kapasitor nonpolar, yang tidak mempunyai kutub, bila dipasang pada rangkaian arus bolak-balik (AC).
Jenis-jenis kapasitor
Gambar 2. Berbagai macam kapasitor antara lain kapasitor : (a) celah-udara (b) botol leyden (c) film logam (d) untuk menekan interferensi (e) variabel mini.
Ada dua cara pemasangan kapasitor, yaitu tanpa memperhatikan kutub-kutubnya (untuk kapasitor nonpolar) dan dengan memperhatikan kutub-kutubnya (untuk kapasitor polar).


Beberapa kegunaan kapasitor, antara lain sebagai berikut:

a. menyimpan muatan listrik,
b. memilih gelombang radio (tuning),
c. sebagai perata arus pada rectifier,
d. sebagai komponen rangkaian starter kendaraan bermotor,
e. memadamkan bunga api pada sistem pengapian mobil,
f. sebagai filter dalam catu daya (power supply).


Kapasitas kapasitor menyatakan kemampuan kapasitor dalam menyimpan muatan listrik. Kapasitas atau kapasitansi (lambang C ) didefinisikan sebagai perbandingan antara muatan listrik (q) yang tersimpan dalam kapasitor dan beda potensial (V ) antara kedua keping. Secara matematis kapasitas kapasitor dapat dituliskan sebagai berikut:

C = q/V ........................................................... (1)

dengan:

C = kapasitas kapasitor (farad)
q = muatan listrik (coulomb)
V = beda potensial (volt)

Kapasitas 1 F sangat besar, sehingga sering dinyatakan dalam mikrofarad (μF) dan pikofarad (pF), di mana 1 μF = 10-6 F dan 1pF = 10-12 F.

4. Kapasitas Kapasitor Keping Sejajar


Dua keping (lempeng) sejajar yang diberi muatan listrik berlainan dapat menyimpan muatan listrik. Dengan kata lain, keping sejajar tersebut mempunyai kapasitas.
Kapasitor keping sejajar
Gambar 3. (a) Kapasitor keping sejajar (b) Garis-garis medan listrik kapasitor keping sejajar.
Gambar 3. menggambarkan pemindahan muatan listrik +q dari suatu titik ke titik lain, antara kedua bidang kapasitor. Gaya yang dialami setiap titik adalah sama besar.

Untuk memindahkan muatan itu tanpa percepatan, diperlukan gaya lain untuk melawan gaya F sebesar F' = -q.E. Dengan demikian, besar usahanya adalah: 

W = F'.d = -q.E.d

Mengingat usaha sama dengan perubahan energi potensial listrik, diperoleh persamaan:

W = Ep = q(V2 – V1)

Dengan demikian, beda potensial antara kedua lempeng kapasitor itu adalah:

V = E.d ......................................................... (2)

dengan:

V = beda potensial (volt)
E = kuat medan listrik (N/C)
d = jarak kedua keping (m)

Mengingat kuat medan listrik di antara keping sejajar adalah :
kuat medan listrik di antara keping sejajar
maka beda potensial di antara keping sejajar dirumuskan:
beda potensial di antara kapasitor keping sejajar
Jadi, kapasitas kapasitor keping sejajar adalah:
kapasitas kapasitor keping sejajar
dengan:

C = kapasitas kapasitor (F)
ε0 = permitivitas ruang hampa atau udara (8,85 × 10-12 C/Nm2)
d = jarak keping (m)
A = luas penampang keping (m2)

Apabila di antara keping sejajar diberi zat dielektrik, permitivitas ruang hampa atau udara (ε0) diganti dengan permitivitas zat dielektrik.

ε = K.ε0 ............................................................. (4)

dengan K adalah konstanta dielektrik. Dengan demikian, kapasitas kapasitor keping sejajar yang diberi zat dielektrik dirumuskan:
kapasitas kapasitor keping sejajar yang diberi zat dielektrik
5. Kapasitas Bola Konduktor

Pada bola konduktor akan timbul potensial apabila diberi muatan. Berarti, bola konduktor juga mempunyai kapasitas. Dari persamaan C = q/V, dan V = (kq)/r, kapasitas bola konduktor dapat dirumuskan:

C = r/k
C = 4πε0r ........................................................... (6) 

Contoh Soal 1 :

Jika muatan dan kapasitas kapasitor diketahui berturut-turut sebesar 5 μC dan 20 μF , tentukan beda potensial kapasitor tersebut!

Penyelesaian:

Diketahui: 

q = 5 μC= 5 ×10-6 C
C = 20 μF = 2 × 10-5 F

Ditanya: V ... ?

Pembahasan :
beda potensial kapasitor
Contoh Soal 2 :

Sebuah kapasitor mempunyai luas bidang cm2 dan jarak kedua bidang 0,4 cm. Apabila muatan masing-masing bidang 4,425 μC dan permitivitas listrik udara 8,85 × 10-12 C2N-1m-2, tentukan:

a. kapasitas kapasitor,
b. kapasitas kapasitor apabila diberi bahan dielektrik dengan konstanta dielektrik 5,
c. beda potensial antara kedua bidang kapasitor!

Penyelesaian:

Diketahui: 

A = 4 cm2 = 4 × 10-4 m2
d = 0,4 cm = 4 × 10-3 m
q = 4,425 μC = 4,425 × 10-6 C
ε0 = 8,85 × 10-12 C2N-1m-2
K = 5

Ditanya: 

a. C = ... ?
b. C dengan K = 5 ... ?
c. V = ... ?

Pembahasan :
kapasitas kapasitor apabila diberi bahan dielektrik dengan konstanta


Seperti halnya hambatan listrik, kapasitor juga dapat dirangkai seri, paralel, atau campuran antara seri dan paralel. Untuk rangkaian seri dan paralel pada kapasitor, hasilnya berlainan dengan rangkaian seri dan paralel pada hambatan. 

6.1. Rangkaian Seri Kapasitor

Untuk memperoleh nilai kapasitas kapasitor yang lebih kecil daripada kapasitas semula adalah dengan menyusun beberapa kapasitor secara seri. Apabila rangkaian kapasitor seri diberi beda potensial, pada setiap kapasitor memperoleh jumlah muatan yang sama, meskipun besar kapasitasnya berlainan.

q1 = q2 = q3 = qtotal .................................................. (7)

Apabila beda potensial kapasitor seri tersebut VAB = Vs, berlaku persamaan:

VAB = Vs = V1 + V2 + V3 ......................................... (8)

Karena V = q/C, maka:
Berdasarkan persamaan (7), maka:
Kedua ruas dibagi q, akan diperoleh:
.................................................. (9)
untuk n kapasitor yang dihubungkan secara seri, persamaan 7. menjadi:
n kapasitor yang dihubungkan secara seri
Bentuk rangkaian kapasitor yang disusun seri ditunjukkan pada Gambar 4.
Rangkaian seri kapasitor
Gambar 4. Rangkaian seri kapasitor.
Contoh Soal 3 :

Tiga kapasitor masing-masing berkapasitas 2 μF, 3 μF, dan 4 μF disusun seri, kemudian diberi sumber listrik 13 volt. Tentukan potensial listrik masing-masing kapasitor!

Penyelesaian:

Diketahui: 

C1 = 2 μF
C2 = 3 μF
C3 = 4 μF
V = 13 volt

Ditanya: 

a. V1 = ... ?
b. V2 = ... ?
c. V3 = ... ?

Pembahasan :
Potensial listrik kapasitor

6.1. Rangkaian Seri Kapasitor


Kapasitor yang dirangkai paralel, apabila diberi tegangan V setiap kapasitor akan memperoleh tegangan yang sama, yaitu V, sehingga pada rangkaian kapasitor paralel berlaku:

Vtotal = V1 = V2 = V3 ................................................ (11)

dengan menggunakan persamaan (1), maka akan diperoleh:

qtotal = q1 + q2 + q3 .................................................. (12)
Ctotal.Vtotal = C1.V1 + C2.V2 + C3.V3

Berdasarkan persamaan (11), maka diperoleh:

CP = C1 + C2 + C3 ............................................... (13)

Apabila terdapat n kapasitor, maka:

CP = C1 + C2 + C3 + ... + Cn ............................... (14)

Gambar 5. memperlihatkan bentuk rangkaian pada kapasitor yang disusun paralel.
Rangkaian paralel kapasitor
Gambar 5. Rangkaian paralel kapasitor.
Contoh Soal 4 :
Empat buah kapasitor dirangkai paralel
Empat buah kapasitor dirangkai seperti pada gambar. Jika beda potensialnya 12 V, tentukan:

a. kapasitas kapasitor penggantinya,
b. beda potensial listrik pada masing-masing kapasitor!

Penyelesaian:

Diketahui: 

C1 = 2 μF 
C2 = 4 μF 
C3 = 3 μF
C4 = 6 μF
Vab = 12 volt

Ditanya: 

a. Cpengganti = ... ?

b. V1, V2, V3, V4 = ... ?

Pembahasan :
beda potensial listrik kapasitas kapasitor pengganti


Muatan listrik menimbulkan potensial listrik dan untuk memindahkannya diperlukan usaha. Untuk memberi muatan pada suatu kapasitor diperlukan usaha listrik, dan usaha listrik ini disimpan di dalam kapasitor sebagai energi. Pemberian muatan dimulai dari nol sampai dengan q coulomb. Potensial keping kapasitor juga berubah dari nol sampai dengan V secara linier. Maka beda potensial rata-ratanya adalah:
beda potensial rata-rata energi kapasitor
Berdasarkan persamaan (1), maka diperoleh:
Jadi, energi yang tersimpan pada kapasitor adalah:
energi yang tersimpan pada kapasitor
Contoh Soal 5 :

Sebuah kapasitor mempunyai kapasitas 4 μF diberi beda potensial 25 volt. Berapakah energi yang tersimpan?

Penyelesaian:

Diketahui:

C = 4 μF = 4 × 10-6
V = 25 volt

Ditanya: W = ... ?

Pembahasan :

W = ½ C.V2 = ½ (4 × 10-6)(25)2 = 1,25× 10-3 joule

Contoh Soal 6 :

Sebuah kapasitor 1,2 μF dihubungkan dengan 3 kV. Hitunglah energi yang tersimpan dalam kapasitor!

Penyelesaian:

Diketahui:

C = 1,2 μF = 1,2× 10-6
V = 3 kV = 3.000 V

Ditanya: W = ... ?

Pembahasan :

W = ½  C. V2 = ½ (1,2× 10-6)(3.000)2 = 5,4 J

Materi Fisika :

Mesin Fotokopi
Bagian-bagian mesin fotokopi

Mesin fotokopi menghasilkan salinan dokumen secara cepat dan hasilnya jelas. Mesin fotokopi ini dijalankan dengan cara menyorotkan sinar ke dokumen asli. Citra pantulannya difokuskan ke tabung yang dimuati listrik statis. Muatan statis tersebar dan melekat pada tabung dengan menyesuaikan gelap terang pada dokumen asli. Bubuk toner ditasik oleh muatan statis di sekeliling tabung, yang kemudian dipindahkan ke selembar kertas salinan dan dikeringkan melalui pemanasan.

Anda sekarang sudah mengetahui Kapasitor atau Kondensator. Terima kasih anda sudah berkunjung ke Perpustakaan Cyber.

Referensi :

Budiyanto, J. 2009. Fisika : Untuk SMA/MA Kelas XII. Pusat Perbukuan, Departemen Pendidikan Nasional, Jakarta. p. 298.

Referensi Lainnya :

No comments:

Post a Comment

Berkomentarlah secara bijak. Komentar yang tidak sesuai materi akan dianggap sebagai SPAM dan akan dihapus.
Aturan Berkomentar :
1. Gunakan nama anda (jangan anonymous), jika ingin berinteraksi dengan pengelola blog ini.
2. Jangan meninggalkan link yang tidak ada kaitannya dengan materi artikel.
Terima kasih.

Search